"SEO"是由英文Search Engine Optimization缩写而来,中文意译为“搜索引擎优化”属于网络营销的范畴内的职位之一,不很严谨但最简单的来说,SEO是指通过优化网站的内容质量及浏览体验等方面,目的为使得百度主动把网页排到更高的排名位置。
「免费流量渠道」的性质容易让人误解为它不用花钱。确实是不用给平台交钱,但这么白捡的事情,大家都喜欢去做,导致竞争相当激烈。以致即便区别于SEM而言,SEO是非付费的,然而在许多时候,SEM的ROI反而还比SEO推广更高,否则没多少人情愿烧钱投竞价。
在实际的SEO优化过程中,一般我主要和人提及的是以下五点:
1. 首先,必须深刻认识到这个行业的极端特殊性——
(1) 做起来难
在极为有限的信息下设法反过来勾绘整个搜索引擎的全貌,其实这本质上比研发设计搜索规则,要来得更为困难。若没有成熟系统的研究手段,就几乎无从跟进百度的任何新策略。
(2) 离钱太近
专业SEO人员大多会选择自己做站,只要手里有一个每天几十万IP的站,哪怕完全正规变现,至少也有数十万的年收入;其中不少人会选择一定程度上涉灰,比如那些图片看着诱人的你懂的,这时几十万IP站点对应年收入很容易破百万。
只有意识到这两个核心特点的情况下,才会清楚这行和其它互联网职业的根本性差异。
2. 如果预算有限,计划是由公司现有的产品/运营等人员来兼顾搜索优化工作,那么一般都不推荐去以网上的SEO文章作为主要参考,许多是错误过时的、剩下那一部分里面也几乎全是正确而无用的。
常规网站优化步骤主要是依照百度搜索资源平台文档,尤其做国外谷歌SEO优化,则也必须遵守Google网站站长平台的官方指南,切勿低估它们的重要性。
我们若有了更好的体验,搜索引擎也是受益方,因此双方利益一致,官网一手资料比起至少90%以上的第三方资料强得多。跟着操作下来,多少能让一部分优质站缓慢的得到些本应有的自然搜索流量水平。
3. 如果计划自行进一步深入去截获更多流量,那么要明白一点:尤其是成熟的行业里面排名靠前的站,往往SEO优化都已经做了十几二十年了。哪怕他们平均做得再糟糕,对于绝大多数人而言,这仍然不是一两年里面能轻易弥补的差距。
同时,假设原先关键词平均排名在50名,这时一个非职业SEO人员做出了非常好的成效,直接提高到了平均20名,其实还是完全没有用处。第一页就那么十个位置,除非我们把平均关键词排名做到行业至少前十几的程度(其中还得计入知乎、新浪等各领域都有许多流量的网站),否则实际能得到的流量就极为有限。
4. 如果计划招聘全职人员,要继续意识到这行离钱太近了,在自己的网站上做出十万级IP以后,不难弄到每年躺赚百万,这显然比996的百万要舒服得多。
于是我这么多年了解到的里面,总结起来,哪怕在这职位上最能开薪资的阿里,招到的人也常常一点都不懂网站优化,或是至多工作一阵却完全留不住人。
因为这个职位独自掌握了一整个主要的非付费用户渠道,所以假如网站原先体量已非常大,哪怕某人一整年操作下来只提升个几个百分点,往往仍可以远超公司其它职位的人均收益。然而这并不改变这只是在瞎折腾的事实——行业最头部一批人都可以轻松做出至少几十百分点的增幅,只不过大家都不会去打工。
5. 如果想要找到SEO公司进行合作,也类似的道理:
既然头部甲方公司也招不到人,那么小小乙方公司怎么可能搞得定?
写在最后,这些并非是业内哪个人的问题,「免费渠道流量」的性质使它一开始就注定会变成个极其鱼龙混杂的行业。因此,对于看到所有信息都应当甄选鉴别。
圈内网名ZERO
2010年开始全职入行。2012年,被赶集网CEO(现瓜子二手车创始人)亲自挖去担任SEO负责人,当时21岁,单枪匹马把整站自然流量做到了超越有数十人团队的58同城。后来也曾担任过美团的SEO负责人,三个月内就使其百度自然流量不止翻倍。
2015年至今自由职业,期间操盘过约二十个大中型网站。其中包括下厨房、永乐票务等知名网站,医美、教育、玉石等行业垂直站,及影视、汽车、软件下载等多种类型的流量站,其中部分案例数据在页面下方有展示 »
SEO前线于2014年开始到「SEO」关键词的百度首页,具体操作手段在下面引用的文章里有毫无保留的公开。现已失效的快速排名这种作弊手段在之前几年里影响面很大,也导致本站被挤出了第一页。2022年4月时百度终于一次性打击了快排,加上这边稍花了些时间再做优化,使得这站排名回升并稳定至今。
应该不难发现排名位置接近的那些站,收录和权重规模上往往十倍百倍的超过这个网站;但对网站优化的深刻理解是可以轻松弥补十倍百倍的规模差距的。
如同程序员,有那些培训机构教出来且不再精进,总是百度一下来复制粘贴现成代码,连英文文档都不会去看的;也有在世界最前沿领域攻克人工智能难题,可能会引领时代的。许多行业的上下限差距极大,同样,不该以可以粗略了解到的SEO从业者平均水平,来设法度量这个领域所可能达到的上限。下面具体详解从最初的学习到后续研究所会经历的阶段。
基础夯实的主要步骤百度及Google官方网站指南 -> 搜索引擎原理 推荐《走进搜索引擎》与《这就是搜索引擎》 -> 百度专利 早期申请人为李彦宏或姚旭等人的基础架构部分,以及近期的
无论官网指南还是专利这般生涩文档,一切由翻阅现成资料可获得的知识,似乎都只应归入新手入门的学习阶段——行业头部不少人大约在十多年已经完成这些进度。即便早年我与人合著过《SEO深度解析》,但回头看来,唯有从搜索引擎侧入手学习才是值得推荐的方向。
进阶探索的主要步骤程序技术 非程序员写代码最常使用Python -> 数据分析 统计学为主
国外SEOMOZ在十年前组织用Pearson相关系数(后转为使用Spearman)在已知可能有效的排序规则之中,设法量化出各项的重要性,便是典型一例。
后续研究的主要步骤机器学习 深度学习为主 -> 抓取全网数据 -> 溯因推理 基础的如穆勒五法
因为如今搜索引擎的大多规则都由深度学习等手段而得出,若没亲身写过相关代码,就没法切实了解到特征抽取、样本归纳、过拟合等的关键原理,以及因果倒置、特征穿越等机器学习的天生缺陷。若缺乏这些知识,就无从想象哪些网页特征(有一部分特征表面看来非常奇怪)可能会大幅影响排名表现。
由海量的已知排名「结果」,批量去反向推导出其「原因」也即已知/潜在的排序因素,并尽可能进行因果推断,有时需要些逻辑学基础来支撑。
逻辑规则放诸四海都是不变的,因此有个别足够聪明的人,无需专业学习也一样能得到类似的成效,有时同样做好得到巨大的流量效果。但显然系统的学习,对于不同人具有普适性,并且成效会更稳定。
再更进一步的,由于搜索引擎规则过于繁杂,逐步推理的手段只能解决一小部分重要问题,却难以广泛覆盖到所有情境。目前百度的策略已经非常依赖于其自行训练的语言模型,想搞明白一个AI模型具体做了什么的最佳方法,就是训练另一个专门反解它的AI模型,诸如OpenAI就用GPT4去搞清楚GPT2的内部特定神经元到底做了什么。
尽管非专业做技术,但在十余年的时间中,我保持着几乎每天写代码来获取、分析、监控各式数据的习惯,有充足的代码经验积累,以此再花了额外约三个月的时间训练了一些AI模型。即便它们不可能解决所有的SEO问题,但仍在个别特定的排名规则研究上,得到了远远超越我过去多年研究的成果。
除了AI生成文章内容以外,像是根据对百度模型的排序规则的精细理解,结合具体正文内容,来针对修改网站原有文章的标题等等方式,可以利用起一部分网站原有的多年深厚基础,这类操作的效果其实才是真正容易让流量一下暴涨的。像是提到的改title,谁都知道只要title上面没写关键词就几乎没法有排名,其实它也正是提升空间最大的地方之一,只改它往往就能在一个大型站点直接带来许多人不可想象的几倍日均UV增长。在页面所引用的知乎上发布的文章中有提到一些早年稍微相关的案例。
这些就是我在十余年的时间里面做过的详细探索的原理方向,其实际成效便体现在了本站官网以及其它无数令同行可望不可及的案例之中。然而,业内有许多人至今都未完成上述的第一个学习阶段,一共做出过的流量提升实效可能也就几千几万的日均IP,却常断言「SEO是一个简单的事情,不存在什么深奥操作」,久而久之导致其它业内业外人士也往往都这么想,就相当不合适。
SEO理论研究过程相当繁琐,但落实起来却易如反掌——
百度核心规则几乎都不予公开,只能百般技巧去反向推理,
但实际影响用户感知的着陆页就那么点大,
大家只是不知该把很有限的地方到底往什么样子去改。
平常能见到的一些「SEO方法」大部分都是正确而无用的。
尤其是在AI的年代,百度的规则已发生了天翻地覆的变化。
以近两年的实际情况来看,实际有效的是同行们一无所知的,
包括在我早前的知乎文章里面也从未提及的地方。
此外,抖音SEO及小红书SEO也略有一些独到方法。
所谓AI模型的应用领域绝不只是内容生成。
在SEO应用AI模型的核心之处在于:
先喂给模型海量的数据,从而让它理解百度排序规则。
最终,确保被生成的文章直接可以切实的占据最好的排名位置。
而这,是通过GPT等哪怕再强的现有模型也是无法做到的。
具体的应用场景,除了根据百度的喜好书写新的内容以外,
往往更具价值的,是重新修改网站历史多年积累的无数文章。
待一两个月百度重新抓取重新计算排名之后,流量就会得到暴涨。